Quantifying the energetics of molecular superbubbles in PHANGS galaxies

Author:

Watkins E. J.ORCID,Kreckel K.ORCID,Groves B.,Glover S. C. O.ORCID,Whitmore B. C.,Leroy A. K.,Schinnerer E.ORCID,Meidt S. E.,Egorov O. V.ORCID,Barnes A. T.,Lee J. C.,Bigiel F.ORCID,Boquien M.ORCID,Chandar R.,Chevance M.ORCID,Dale D. A.ORCID,Grasha K.,Klessen R. S.ORCID,Kruijssen J. M. D.ORCID,Larson K. L.,Li J.,Méndez-Delgado J. E.ORCID,Pessa I.,Saito T.,Sanchez-Blazquez P.ORCID,Sarbadhicary S. K.,Scheuermann F.,Thilker D. A.,Williams T. G.ORCID

Abstract

Context. Star formation and stellar feedback are interlinked processes that redistribute energy, turbulence, and material throughout galaxies. Because young and massive stars form in spatially clustered environments, they create pockets of expanding gas termed superbubbles, which retain information about the physical processes that drive them. As these processes play a critical role in shaping galaxy discs and regulating the baryon cycle, measuring the properties of superbubbles provides important input for galaxy evolution models. Aims. With the wide coverage and high angular resolution (∼50–150 pc) of the PHANGS–ALMA 12CO (J = 2−1) survey, we can now resolve, identify and characterise a statistically representative number of superbubbles using molecular gas in nearby galaxies. Methods. We identify superbubbles by requiring spatial correspondence between shells in CO with stellar populations identified in PHANGS–HST. Then, by combining the properties of the stellar populations with the CO, we quantify the energetics of the stars and constrain feedback models. We visually find 325 cavities across 18 PHANGS–ALMA galaxies, 88 of which have clear superbubble signatures (unbroken shells, central clusters, kinematic signatures of expansion). We measure their radii and expansion velocities using CO (2–1) to dynamically derive their ages and the mechanical power driving the bubbles, which we use to compute the expected properties of the parent stellar populations driving the bubbles. Results. We find consistency between the predicted and derived stellar ages and masses of the stellar populations if we use a supernova (SN) model that injects energy with a coupling efficiency of ∼10%. Not only does this confirm that molecular gas accurately traces superbubble properties, but it also provides key observational constraints for superbubble models. We also find evidence that the bubbles are sweeping up gas as they expand, and speculate that these sites have the potential to host new generations of stars. Conclusions. This work demonstrates that molecular superbubbles provide novel quantitative constraints on SNe feedback efficiencies and gas clearing times, and represent a promising environment to search for the propagation of star formation, all of which are needed to understand what sets the observed star formation rates in galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3