Formation of satellites in circumplanetary discs generated by disc instability

Author:

Inderbitzi C1,Szulágyi J1ORCID,Cilibrasi M1ORCID,Mayer L1

Affiliation:

1. Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Abstract

ABSTRACT We investigated the formation and evolution of satellite systems in a cold, extended circumplanetary disc (CPD) around a 10MJupiter gas giant, which was formed by gravitational instability at 50 au from its star. The disc parameters were from a 3D global smoothed particle hydrodynamics simulation. We used a population synthesis approach, where we placed satellite embryos in this disc, and let them accrete mass, migrate, collide until the gaseous disc is dissipated. In each run, we changed the initial dust-to-gas ratio, dispersion- and refilling time-scales within reasonable limits, as well as the number of embryos and their starting locations. We found that most satellites have mass similar to the Galilean ones, but very few can reach a maximum of 3MEarth due to the massive CPD. Large moons are often form as far as 0.5Rdisc. The migration rate of satellites are fast, hence during the disc lifetime, an average of 10MEarth worth of moons will be engulfed by the planet, increasing greatly its metallicity. We also investigated the effect of the planet’s semimajor axis on the resulting satellite systems by rescaling our model. This test revealed that for the discs closer to the star, the formed moons are lighter, and a larger amount of satellites are lost into the planet due to the even faster migration. Finally, we checked the probability of detecting satellites like our population, which resulted in a low number of ≤ 3 per cent even with upcoming powerful telescopes like E-ELT.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3