An X-ray view of the ambiguous nuclear transient AT2019pev

Author:

Yu Zhefu1ORCID,Kochanek C S12,Mathur S12,Auchettl K345,Grupe D6ORCID,Holoien T W-S7ORCID

Affiliation:

1. Department of Astronomy, The Ohio State University , Columbus, OH 43210, USA

2. Center of Cosmology and Astro-Particle Physics, The Ohio State University , Columbus, OH 43210, USA

3. School of Physics, The University of Melbourne , Parkville, VIC 3010, Australia

4. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) , Australia

5. Department of Astronomy and Astrophysics, University of California , Santa Cruz, CA 95064, USA

6. Department of Physics, Geology, and Engineering Technology, Northern Kentucky University , Highland Heights, KY 41099, USA

7. The Observatories of the Carnegie Institution for Science , 813 Santa Barbara St, Pasadena, CA 91101, USA

Abstract

ABSTRACT AT2019pev is a nuclear transient in a narrow-line Seyfert 1 galaxy at z = 0.096. The archival ultraviolet, optical, and infrared data showed features of both tidal disruption events and active galactic nuclei (AGNs), and its nature is not fully understood. We present detailed X-ray observations of AT2019pev taken with Swift, Chandra, and NICER over 173 d of its evolution since the first Swift XRT epoch. The X-ray luminosity increases by a factor of 5 in 5 d from the first Swift XRT epoch to the light-curve peak. The light curve decays by a factor of 10 over ∼75 d and then flattens with a weak re-brightening trend at late times. The X-ray spectra show a ‘harder-when-brighter’ trend before peak and a ‘harder-when-fainter’ trend after peak, which may indicate a transition of accretion states. The archival ground-based optical observations show similar time evolution as the X-ray light curves. Beyond the seasonal limit of the ground-based observations, the Gaia light curve is rising towards an equally bright or brighter peak 223 d after the optical discovery. Combining our X-ray analysis and archival multiwavelength data, AT2019pev more closely resembles an AGN transient.

Funder

NSF

Australian Research Council

NASA

Space Telescope Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3