Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN -14ko

Author:

Payne Anna V.ORCID,Auchettl KatieORCID,Shappee Benjamin J.ORCID,Kochanek Christopher S.ORCID,Boyd Patricia T.ORCID,Holoien Thomas W.-S.ORCID,Fausnaugh Michael M.ORCID,Ashall ChrisORCID,Hinkle Jason T.ORCID,Vallely Patrick J.ORCID,Stanek K. Z.,Thompson Todd A.ORCID

Abstract

Abstract ASASSN-14ko is a nuclear transient at the center of the AGN ESO 253−G003 that undergoes periodic flares. Optical flares were first observed in 2014 by the All-Sky Automated Survey for Supernovae (ASAS-SN) and their peak times are well-modeled with a period of 115.2 1.2 + 1.3 days and period derivative of −0.0026 ± 0.0006. Here we present ASAS-SN, Chandra, HST/STIS, NICER, Swift, and TESS data for the flares that occurred on 2020 December, 2021 April, 2021 July, and 2021 November. These four flares represent flares 18–21 of the total number of flares observed by ASAS-SN so far since 2014. The HST/STIS UV spectra evolve from blueshifted broad absorption features to redshifted broad emission features over ∼10 days. The Swift UV/optical light curves peaked as predicted by the timing model, but the peak UV luminosities that varied between flares and the UV flux in Flare 20 were roughly half the brightness of the other peaks. The X-ray luminosities consistently decreased and the spectra became harder during the UV/optical rise, but apparently without changes in absorption. Finally, two high-cadence TESS light curves from Flare 18 and Flare 12 showed that the slopes during the rising and declining phases changed over time, which indicates some stochasticity in the flare’s driving mechanism. Although ASASSN-14ko remains observationally consistent with a repeating partial tidal disruption event, these rich multi-wavelength data are in need of a detailed theoretical model.

Funder

National Aeronautics and Space Administration

National Science Foundation

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3