Discovery of the luminous X-ray ignition eRASSt J234402.9−352640

Author:

Homan D.,Krumpe M.,Markowitz A.,Saha T.,Gokus A.,Partington E.,Lamer G.,Malyali A.,Liu Z.,Rau A.,Grotova I.,Cackett E. M.,Buckley D. A. H.,Ciroi S.,Di Mille F.,Gendreau K.,Gromadzki M.,Krishnan S.,Schramm M.,Steiner J. F.

Abstract

In November 2020, a new, bright object, eRASSt J234402.9−352640, was discovered in the second all-sky survey of SRG/eROSITA. The object brightened by a factor of at least 150 in 0.2–2.0 keV flux compared to an upper limit found six months previous, reaching an observed peak of 1.76−0.24+0.03 × 10−11 erg cm−2 s−1. The X-ray ignition is associated with a galaxy at z = 0.10, making the peak luminosity log10(L0.2−2 keV/[erg s−1]) = 44.7 ± 0.1. Around the time of the rise in X-ray flux, the nucleus of the galaxy brightened by approximately 3 mag. in optical photometry, after correcting for the host contribution. We present X-ray follow-up data from Swift, XMM-Newton, and NICER, which reveal a very soft spectrum as well as strong 0.2–2.0 keV flux variability on multiple timescales. Optical spectra taken in the weeks after the ignition event show a blue continuum with broad, asymmetric Balmer emission lines, and high-ionisation ([OIII]λλ4959,5007) and low-ionisation ([NII]λ6585, [SII]λλ6716,6731) narrow emission lines. Following the peak in the optical light curve, the X-ray, UV, and optical photometry all show a rapid decline. The X-ray light curve shows a decrease in luminosity of ∼0.45 over 33 days and the UV shows a drop of ∼0.35 over the same period. eRASSt J234402.9−352640 also shows a brightening in the mid-infrared, likely powered by a dust echo of the luminous ignition. We find no evidence in Fermi-LAT γ-ray data for jet-like emission. The event displays characteristics of a tidal disruption event (TDE) as well as of an active galactic nucleus (AGN), complicating the classification of this transient. Based on the softness of the X-ray spectrum, the presence of high-ionisation optical emission lines, and the likely infrared echo, we find that a TDE within a turned-off AGN best matches our observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3