The young protostellar disc in IRAS 16293−2422 B is hot and shows signatures of gravitational instability

Author:

Zamponi Joaquin1ORCID,Maureira María José1ORCID,Zhao Bo1ORCID,Liu Hauyu Baobab2,Ilee John D3ORCID,Forgan Duncan4ORCID,Caselli Paola1

Affiliation:

1. Max-Planck-Institut für Extraterrestrische Physik (MPE), D-85748 Garching, Germany

2. Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No.1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC

3. School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

4. Centre for Exoplanet Science, SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK

Abstract

ABSTRACT Deeply embedded protostars are actively fed from their surrounding envelopes through their protostellar disc. The physical structure of such early discs might be different from that of more evolved sources due to the active accretion. We present 1.3 and 3 mm ALMA continuum observations at resolutions of 6.5 and 12 au, respectively, towards the Class 0 source IRAS 16293−2422 B. The resolved brightness temperatures appear remarkably high, with Tb > 100 K within ∼30 au and Tb peak over 400 K at 3 mm. Both wavelengths show a lopsided emission with a spectral index reaching values less than 2 in the central ∼20 au region. We compare these observations with a series of radiative transfer calculations and synthetic observations of magnetohydrodynamic and radiation hydrodynamic protostellar disc models formed after the collapse of a dense core. Based on our results, we argue that the gas kinematics within the disc may play a more significant role in heating the disc than the protostellar radiation. In particular, our radiation hydrodynamic simulation of disc formation, including heating sources associated with gravitational instabilities, is able to generate the temperatures necessary to explain the high fluxes observed in IRAS 16293B. Besides, the low spectral index values are naturally reproduced by the high optical depth and high inner temperatures of the protostellar disc models. The high temperatures in IRAS 16293B imply that volatile species are mostly in the gas phase, suggesting that a self-gravitating disc could be at the origin of a hot corino.

Funder

Ministry of Science and Technology, Taiwan

MOST

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3