Dynamics of Protoplanetary Disks

Author:

Armitage Philip J.1

Affiliation:

1. JILA, University of Colorado, Boulder CO 80309-0440;

Abstract

Protoplanetary disks are quasi-steady structures whose evolution and dispersal determine the environment for planet formation. I review the theory of protoplanetary disk evolution and its connection to observations. Substantial progress has been made in elucidating the physics of potential angular momentum transport processes—including self-gravity, magnetorotational instability, baroclinic instabilities, and magnetic braking—and in developing testable models for disk dispersal via photoevaporation. The relative importance of these processes depends upon the initial mass, size, and magnetization of the disk, and subsequently on its opacity, ionization state, and external irradiation. Disk dynamics is therefore coupled to star formation, pre-main-sequence stellar evolution, and dust coagulation during the early stages of planet formation and may vary dramatically from star to star. The importance of validating theoretical models is emphasized, with the key observations being those that probe disk structure on the scales between 1 AU and 10 AU, where theory is most uncertain.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 423 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3