Photoevaporation obfuscates the distinction between wind and viscous angular momentum transport in protoplanetary discs

Author:

Coleman Gavin A L1ORCID,Mroueh Joseph K1,Haworth Thomas J1ORCID

Affiliation:

1. Astronomy Unit, Department of Physics and Astronomy, Queen Mary University of London , Mile End Road, London E1 4NS , UK

Abstract

ABSTRACT How protoplanetary discs evolve remains an unanswered question. Competing theories of viscosity and magnetohydrodynamic disc winds have been put forward as the drivers of angular momentum transport in protoplanetary discs. These two models predict distinct differences in the disc mass, radius, and accretion rates over time, that could be used to distinguish them. However that expectation is built on models that do not include another important process – photoevaporation, both internally by the host star and externally by neighbouring stars. In this work we produce numerical models of protoplanetary discs including viscosity, magnetohydrodynamic disc winds, and internal and external photoevaporation. We find that even weak levels of external photoevaporation can significantly affect the evolution of protoplanetary discs, influencing the observable features such as disc radii, that might otherwise distinguish between viscous and wind driven discs. Including internal photoevaporation further suppresses differences in evolution between viscous and wind driven discs. This makes it much more difficult than previously anticipated, to use observations of nearby star forming regions to determine whether discs are viscous or wind driven. Interestingly we find that evolved protoplanetary discs in intermediate FUV environments may be the best cases for differentiating whether they evolve through viscosity or magnetohydrodynamic disc winds. Ultimately this work demonstrates the importance of understanding what are the key evolutionary processes and including as many of those as possible when exploring the evolution of protoplanetary discs.

Funder

STFC

Royal Society

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3