Gravitational Instability, Spiral Substructure, and Modest Grain Growth in a Typical Protostellar Disk: Modeling Multiwavelength Dust Continuum Observations of TMC1A

Author:

Xu WenruiORCID,Ohashi SatoshiORCID,Aso YusukeORCID,Liu Hauyu BaobabORCID

Abstract

Abstract Embedded class 0/I protostellar disks represent the initial condition for planet formation. This calls for a better understanding of their bulk properties and the dust grains within them. We model multiwavelength dust continuum observations of the disk surrounding the class I protostar TMC1A to provide insight on these properties. The observations can be well fit by a gravitationally self-regulated (i.e., marginally gravitationally unstable and internally heated) disk model with surface density Σ ∼ 1720(R/10 au)−1.96 g cm−2 and midplane temperature T mid ∼ 185(R/10 au)−1.27 K. The observed disk contains an m = 1 spiral substructure; we use our model to predict the spiral’s pitch angle, and the prediction is consistent with the observations. This agreement serves as both a test of our model and strong evidence of the gravitational nature of the spiral. Our model estimates a maximum grain size a max 196 ( R / 10 au ) 2.45 μ m , which is consistent with grain growth being capped by a fragmentation barrier with a threshold velocity of ∼1 m s−1. We further demonstrate that the observational properties of TMC1A are typical among the observed population of class 0/I disks, which hints that traditional methods of disk data analysis based on Gaussian fitting and the assumption of optically thin dust emission could have systematically underestimated the disk size and mass and overestimated the grain size.

Funder

National Science and Technology Council

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3