On the compressive nature of turbulence driven by ionizing feedback in the pillars of the Carina Nebula

Author:

Menon Shyam H1ORCID,Federrath Christoph1,Klaassen Pamela2ORCID,Kuiper Rolf3,Reiter Megan2ORCID

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

2. UK Astronomy Technology Centre, Royal Observatory Edinburg, Blackford Hill, Edinburgh EH9 3HJ, UK

3. Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany

Abstract

ABSTRACT The ionizing radiation of massive stars sculpts the surrounding neutral gas into pillar-like structures. Direct signatures of star formation through outflows and jets are observed in these structures, typically at their tips. Recent numerical simulations have suggested that this star formation could potentially be triggered by photoionizing radiation, driving compressive modes of turbulence in the pillars. In this study, we use recent high-resolution ALMA observations of 12CO, 13CO, and C18O, J = 2 − 1 emission to test this hypothesis for pillars in the Carina Nebula. We analyse column density and intensity-weighted velocity maps, and subtract any large-scale bulk motions in the plane of the sky to isolate the turbulent motions. We then reconstruct the dominant turbulence driving mode in the pillars, by computing the turbulence driving parameter b, characterized by the relation $\sigma _{\rho /\rho _0} = b \mathcal {M}$ between the standard deviation of the density contrast $\sigma _{\rho /\rho _0}$ (with gas density ρ and its average ρ0) and the turbulent Mach number $\mathcal {M}$. We find values of b ∼ 0.7–1.0 for most of the pillars, suggesting that predominantly compressive modes of turbulence are driven in the pillars by the ionizing radiation from nearby massive stars. We find that this range of b values can produce star formation rates in the pillars that are a factor ∼3 greater than with b ∼ 0.5, a typical average value of b for spiral-arm molecular clouds. Our results provide further evidence for the potential triggering of star formation in pillars through compressive turbulent motions.

Funder

Australian Research Council

Deutsche Forschungsgemeinschaft

National Institutes of Natural Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3