Stellar feedback in the star formation--gas density relation: Comparison between simulations and observations

Author:

Suin P.,Zavagno A.,Colman T.,Hennebelle P.,Verliat A.,Russeil D.

Abstract

The impact of stellar feedback on the Kennicutt-Schmidt (KS) law, which relates the star formation rate (SFR) to the surface gas density, is a topic of ongoing debate. The interpretation of high-resolution observations of individual clouds is challenging due to the various processes at play simultaneously and inherent biases. Therefore, a numerical investigation is necessary to understand the role of stellar feedback and identify observable signatures. In this study we investigate the impact of stellar feedback on the KS law, aiming to identify distinct signatures that can be observed and analysed. By employing magnetohydrodynamic simulations of an isolated cloud, we specifically isolate the effects of high-mass star radiation feedback and protostellar jets. High-resolution numerical simulations are a valuable tool for isolating the impact of stellar feedback on the star formation process, while also allowing us to assess how observational biases may affect the derived relation. We used high-resolution (<0.01 pc) magnetohydrodynamic numerical simulations of a 10$^4\ cloud and followed its evolution under different feedback prescriptions. The set of simulations contained four types of feedback: one with only protostellar jets, one with ionising radiation from massive stars (>8 odot $), one with the combination of the two, and one without any stellar feedback. In order to compare these simulations with the existing observational results, we analysed their evolution by adopting the same techniques applied in the observational studies. Then, we simulated how the same analyses would change if the data were affected by typical observational biases: counting young stellar objects (YSO) to estimate the SFR, the limited resolution for the column density maps, and a sensitivity threshold for detecting faint embedded YSOs. Our analysis reveals that the presence of stellar feedback strongly influences the shape of the KS relation and the star formation efficiency per free-fall time (eff ). The impact of feedback on the relation is primarily governed by its influence on the cloud's structure. Additionally, the evolution of eff throughout the star formation event suggests that variations in this quantity can mask the impact of feedback in observational studies that do not account for the evolutionary stage of the clouds. Although the eff measured in our clouds is higher than what is usually observed in real clouds, upon applying prescriptions to mimic observational biases we recover a good agreement with the expected values. From that, we can infer that observations tend to underestimate the total SFR. Moreover, this likely indicates that the physics included in our simulations is sufficient to reproduce the basic mechanisms that contribute to setting eff . We demonstrate the interest of employing numerical simulations to address the impact of early feedback on star formation laws and to correctly interpret observational data. This study will be extended to other types of molecular clouds and ionising stars, sampling different feedback strengths, to fully characterise the impact of regions on star formation.

Funder

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3