The formation of single neutron stars from double white-dwarf mergers via accretion-induced collapse

Author:

Liu D1234,Wang B1234ORCID

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China

2. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China

Abstract

ABSTRACT The merging of double white dwarfs (WDs) may produce the events of accretion-induced collapse (AIC) and form single neutron stars (NSs). Meanwhile, it is also notable that the recently proposed WD+He subgiant scenario has a significant contribution to the production of massive double WDs, in which the primary WD grows in mass by accreting He-rich material from a He subgiant companion. In this work, we aim to study the binary population synthesis (BPS) properties of AIC events from the double WD mergers by considering the classical scenarios and also the contribution of the WD+He subgiant scenario to the formation of double WDs. First, we provided a dense and large model grid of WD+He star systems for producing AIC events through the double WD merger scenario. Secondly, we performed several sets of BPS calculations to obtain the rates and single NS number in our Galaxy. We found that the rates of AIC events from the double WD mergers in the Galaxy are in the range of $1.4{-}8.9\times 10^{\rm -3}\, \rm yr^{\rm -1}$ for all ONe/CO WD+ONe/CO WD mergers, and in the range of $0.3{-}3.8\times 10^{\rm -3}\, \rm yr^{\rm -1}$ when double CO WD mergers are not considered. We also found that the number of single NSs from AIC events in our Galaxy may range from 0.328 × 107 to 1.072 × 108. The chirp mass of double WDs for producing AIC events distribute in the range of $0.55{-}1.25\, \rm M_{\odot }$. We estimated that more than half of double WDs for producing AIC events are capable to be observed by the future space-based gravitational wave detectors.

Funder

Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3