Black Hole Ultracompact X-Ray Binaries: Galactic Low-frequency Gravitational Wave Sources

Author:

Qin KeORCID,Jiang LongORCID,Chen Wen-CongORCID

Abstract

Abstract In the Galaxy, close binaries with compact objects are important low-frequency gravitational wave (GW) sources. As potential low-frequency GW sources, neutron star/white dwarf (WD) ultracompact X-ray binaries (UCXBs) have been investigated extensively. Using the Modules for Experiments in Stellar Astrophysics code, we systematically explored the evolution of black hole (BH)-main-sequence star (MS) binaries to determine whether their descendants can be detected by space-borne GW detectors. Our simulations showed that BH-MS binaries with an initial orbital period less than the bifurcation period can evolve into BH UCXBs that can be detected by LISA. Such an evolutionary channel would form compact mass-transferring BH-WD systems rather than detached BH-WD systems. The calculated X-ray luminosities of BH UCXBs that can be detected by LISA at a distance d = 1 kpc are ∼1033–1035 erg s−1 (∼1034–1035 erg s−1 for d = 10 kpc); hence, it is possible to detect their electromagnetic counterparts. It is worth emphasizing that only some BH-MS systems with an initial orbital period very close to the bifurcation period can evolve toward low-frequency GW sources whose chirp masses can be measured. The maximum GW frequency of BH UCXBs forming via the BH-MS pathway is about 3 mHz, which is smaller than the minimum GW frequency (6.4 mHz) of mass-transferring BH-WDs originating from a dynamic process. Furthermore, we obtain an initial parameter space (donor-star masses and orbital periods) of progenitors of BH UCXB-GW sources, which can be applied to future population synthesis simulations. By a rough estimation, we predict that LISA would only be able to detect a few BH UCXB-GW sources formed by the BH-MS channel.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3