K2 Ultracool Dwarfs Survey – VI. White light superflares observed on an L5 dwarf and flare rates of L dwarfs

Author:

Paudel R R123ORCID,Gizis J E3,Mullan D J3,Schmidt S J4ORCID,Burgasser A J5ORCID,Williams P K G67ORCID

Affiliation:

1. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

2. Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Cir, Baltimore, MD 21250, USA

3. Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

4. Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

5. Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA

6. Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

7. American Astronomical Society, 1667 K Street NW Ste. 800, Washington, DC 20006, USA

Abstract

ABSTRACT $Kepler\, K2$ long cadence data are used to study white light flares in a sample of 45 L dwarfs. We identified 11 flares on 9 L dwarfs with equivalent durations of (1.3–198) h and total (UV/optical/IR) energies of ≥0.9 × 1032 erg. Two superflares with energies of >1033 erg were detected on an L5 dwarf (VVV BD001): this is the coolest object so far on which flares have been identified. The larger superflare on this L5 dwarf has an energy of 4.6 × 1034 erg and an amplitude of >300 times the photospheric level: so far, this is the largest amplitude flare detected by the Kepler/K2 mission. The next coolest star on which we identified a flare was an L2 dwarf: 2MASS J08585891+1804463. Combining the energies of all the flares which we have identified on 9 L dwarfs with the total observation time which was dedicated by Kepler to all 45 L dwarfs, we construct a composite flare frequency distribution (FFD). The FFD slope is quite shallow (−0.51 ± 0.17), consistent with earlier results reported by Paudel et al. for one particular L0 dwarf, for which the FFD slope was found to be −0.34. Using the composite FFD, we predict that, in early- and mid-L dwarfs, a superflare of energy 1033 erg occurs every 2.4 yr and a superflare of energy 1034 erg occurs every 7.9 yr. Analysis of our L dwarf flares suggests that magnetic fields of ≥0.13–1.3 kG are present on the stellar surface: such fields could suppress Type II radio bursts.

Funder

National Aeronautics and Space Administration

University of Delaware

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3