A Multiwavelength Survey of Nearby M Dwarfs: Optical and Near-ultraviolet Flares and Activity with Contemporaneous TESS, Kepler/K2, Swift, and HST Observations

Author:

Paudel Rishi R.ORCID,Barclay ThomasORCID,Youngblood AllisonORCID,Quintana Elisa V.ORCID,Schlieder Joshua E.ORCID,Vega Laura D.ORCID,Gilbert Emily A.ORCID,Osten Rachel A.ORCID,Peacock SarahORCID,Tristan Isaiah I.ORCID,Feliz Dax L.ORCID,Boyd Patricia T.ORCID,Davenport James R. A.ORCID,Huber DanielORCID,Kowalski Adam F.ORCID,Monsue TeresaORCID,Silverstein Michele L.ORCID

Abstract

Abstract We present a comprehensive multiwavelength investigation into flares and activity in nearby M dwarf stars. We leverage the most extensive contemporaneous data set obtained through the Transiting Exoplanet Sky Survey, Kepler/K2, the Neil Gehrels Swift Observatory, and the Hubble Space Telescope, spanning the optical and near-ultraviolet (NUV) regimes. In total, we observed 213 NUV flares on 24 nearby M dwarfs, with ∼27% of them having detected optical counterparts, and found that all optical flares had NUV counterparts. We explore NUV/optical energy fractionation in M dwarf flares. Our findings reveal a slight decrease in the ratio of optical to NUV energies with increasing NUV energies, a trend in agreement with prior investigations on G–K stars’ flares at higher energies. Our analysis yields an average NUV fraction of flaring time for M0–M3 dwarfs of 2.1%, while for M4–M6 dwarfs it is 5%. We present an empirical relationship between NUV and optical flare energies and compare to predictions from radiative hydrodynamic and blackbody models. We conducted a comparison of the flare frequency distribution (FFDs) of NUV and optical flares, revealing that the FFDs of both NUV and optical flares exhibit comparable slopes across all spectral subtypes. NUV flares on stars affect the atmospheric chemistry, the radiation environment, and the overall potential to sustain life on any exoplanets they host. We find that early and mid-M dwarfs (M0–M5) have the potential to generate NUV flares capable of initiating abiogenesis.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3