Stellar flares

Author:

Kowalski Adam F.ORCID

Abstract

AbstractMagnetic storms on stars manifest as remarkable, randomly occurring changes of the luminosity over durations that are tiny in comparison to the normal evolution of stars. These stellar flares are bursts of electromagnetic radiation from X-ray to radio wavelengths, and they occur on most stars with outer convection zones. They are analogous to the events on the Sun known as solar flares, which impact our everyday life and modern technological society. Stellar flares, however, can attain much greater energies than those on the Sun. Despite this, we think that these phenomena are rather similar in origin to solar flares, which result from a catastrophic conversion of latent magnetic field energy into atmospheric heating within a region that is relatively small in comparison to normal stellar sizes. We review the last several decades of stellar flare research. We summarize multi-wavelength observational results and the associated thermal and nonthermal processes in flaring stellar atmospheres. Static and hydrodynamic models are reviewed with an emphasis on recent progress in radiation-hydrodynamics and the physical diagnostics in flare spectra. Thanks to their effects on the space weather of exoplanetary systems (and thus in our search for life elsewhere in the universe) and their preponderance in Kepler mission data, white-light stellar flares have re-emerged in the last decade as a widely-impactful area of study within astrophysics. Yet, there is still much we do not understand, both empirically and theoretically, about the spectrum of flare radiation, its origin, and its time evolution. We conclude with several big-picture questions that are fundamental in our pursuit toward a greater understanding of these enigmatic stellar phenomena and, by extension, those on the Sun.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-latitude coronal mass ejections on the young solar-like star AB Dor;Monthly Notices of the Royal Astronomical Society;2024-08-07

2. Time-dependent Stellar Flare Models of Deep Atmospheric Heating;The Astrophysical Journal;2024-07-01

3. The corona of a fully convective star with a near-polar flare;Astronomy & Astrophysics;2024-07

4. Hydrogen recombination continua in stellar flares;Monthly Notices of the Royal Astronomical Society: Letters;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3