The evolution of large cavities and disc eccentricity in circumbinary discs

Author:

Ragusa Enrico1ORCID,Alexander Richard1ORCID,Calcino Josh2ORCID,Hirsh Kieran3ORCID,Price Daniel J4ORCID

Affiliation:

1. School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

2. School of Mathematics and Physics, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia

3. Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Université de Lyon, F-69230 Saint-Genis-Laval, France

4. School of Physics & Astronomy, Monash University, Clayton, VIC 3800, Australia

Abstract

ABSTRACT We study the mutual evolution of the orbital properties of high-mass ratio, circular, co-planar binaries and their surrounding discs, using 3D Smoothed Particle Hydrodynamics simulations. We investigate the evolution of binary and disc eccentricity, cavity structure, and the formation of orbiting azimuthal overdense features in the disc. Even with circular initial conditions, all discs with mass ratios q > 0.05 develop eccentricity. We find that disc eccentricity grows abruptly after a relatively long time-scale (∼400–700 binary orbits), and is associated with a very small increase in the binary eccentricity. When disc eccentricity grows, the cavity semimajor axis reaches values $a_{\rm cav}\approx 3.5\, a_{\rm bin}$. We also find that the disc eccentricity correlates linearly with the cavity size. Viscosity and orbit crossing appear to be responsible for halting the disc eccentricity growth – eccentricity at the cavity edge in the range ecav ∼ 0.05–0.35. Our analysis shows that the current theoretical framework cannot fully explain the origin of these evolutionary features when the binary is almost circular (ebin ≲ 0.01); we speculate about alternative explanations. As previously observed, we find that the disc develops an azimuthal overdense feature in Keplerian motion at the edge of the cavity. A low-contrast overdensity still co-moves with the flow after 2000 binary orbits; such an overdensity can in principle cause significant dust trapping, with important consequences for protoplanetary disc observations.

Funder

H2020 European Research Council

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational torque in circumbinary discs: global radial oscillations;Monthly Notices of the Royal Astronomical Society;2024-01-12

2. Stability of coorbital planets around binaries;Astronomy & Astrophysics;2023-12

3. Circumbinary Accretion: From Binary Stars to Massive Binary Black Holes;Annual Review of Astronomy and Astrophysics;2023-08-18

4. Observational signatures of circumbinary discs – I. Kinematics;Monthly Notices of the Royal Astronomical Society;2023-06-22

5. The Decoupling of Binaries from Their Circumbinary Disks;The Astrophysical Journal Letters;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3