Gravitational torque in circumbinary discs: global radial oscillations

Author:

Cimerman Nicolas P1ORCID,Rafikov Roman R12

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge , Wilberforce Road, Cambridge CB3 0WA , UK

2. Institute for Advanced Study , School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 , USA

Abstract

ABSTRACT Circumbinary discs (CBDs) arise in many astrophysical settings, including young stellar binaries and supermassive black hole binaries. Their structure is mediated by gravitational torques exerted on the disc by the central binary. The spatial distribution of the binary torque density (so-called excitation torque density) in CBDs is known to feature global large-amplitude, quasi-periodic oscillations, which are often interpreted in terms of the local resonant Lindblad torques. Here, we investigate the nature of these torque oscillations using 2D, inviscid hydrodynamic simulations and theoretical calculations. We show that torque oscillations arise due to the gravitational coupling of the binary potential to the density waves launched near the inner cavity and freely propagating out in the disc. We provide analytical predictions for the radial periodicity of the torque density oscillations and verify them with simulations, showing that disc sound speed and the multiplicity of the density wave spiral arms are the key factors setting the radial structure of the oscillations. Resonant Lindblad torques play no direct role in determining the radial structure and periodicity of the torque oscillations and manifest themselves only by driving the density waves in the disc. We also observe the formation of vortices at the inner edge of the disc, which can provide a non-trivial contribution to the angular momentum transport in the CBD and may be involved in the development of a non-axisymmetric central cavity.

Funder

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council

DiRAC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3