Fully coupled dynamic simulations of bioprosthetic aortic valves based on an embedded strategy for fluid–structure interaction with contact

Author:

Nestola Maria G C12ORCID,Zulian Patrick1,Gaedke-Merzhäuser Lisa3,Krause Rolf1ORCID

Affiliation:

1. Institute of Computational Science and Center for Computational Medicine in Cardiology, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

2. Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland

3. Institute of Computational Science and Center for Computational Medicine in Cardiology, Università della Svizzera italiana, Lugano, Switzerland

Abstract

Abstract Aims This work aims at presenting a fully coupled approach for the numerical solution of contact problems between multiple elastic structures immersed in a fluid flow. The key features of the computational model are (i) a fully coupled fluid–structure interaction with contact, (ii) the use of a fibre-reinforced material for the leaflets, (iii) a stent, and (iv) a compliant aortic root. Methods and results The computational model takes inspiration from the immersed boundary techniques and allows the numerical simulation of the blood–tissue interaction of bioprosthetic heart valves (BHVs) as well as the contact among the leaflets. First, we present pure mechanical simulations, where blood is neglected, to assess the performance of different material properties and valve designs. Secondly, fully coupled fluid–structure interaction simulations are employed to analyse the combination of haemodynamic and mechanical characteristics. The isotropic leaflet tissue experiences high-stress values compared to the fibre-reinforced material model. Moreover, elongated leaflets show a stress concentration close to the base of the stent. We observe a fully developed flow at the systolic stage of the heartbeat. On the other hand, flow recirculation appears along the aortic wall during diastole. Conclusion The presented FSI approach can be used for analysing the mechanical and haemodynamic performance of a BHV. Our study suggests that stresses concentrate in the regions where leaflets are attached to the stent and in the portion of the aortic root where the BHV is placed. The results from this study may inspire new BHV designs that can provide a better stress distribution.

Funder

Theo Rossi di Montelera Foundation

Metis Foundation Sergio Mantegazza

Fidinam Foundation

Swiss Heart Foundation

PASC projects

Theo-Rossi di Montelera (TRM) foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3