Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves

Author:

Meschini V.,de Tullio M. D.,Querzoli G.,Verzicco R.ORCID

Abstract

In this paper, the structure and the dynamics of the flow in the left heart ventricle are studied for different pumping efficiencies and mitral valve types (natural, biological and mechanical prosthetic). The problem is investigated by direct numerical simulation of the Navier–Stokes equations, two-way coupled with a structural solver for the ventricle and mitral valve dynamics. The whole solver is preliminarily validated by comparisons with ad hoc experiments. It is found that the system works in a highly synergistic way and the left ventricular flow is heavily affected by the specific type of mitral valve, with effects that are more pronounced for ventricles with reduced pumping efficiency. When the ventricle ejection fraction (ratio of the ejected fluid volume to maximum ventricle volume over the cycle) is within the physiological range (50 %–70 %), regardless of the mitral valve geometry, the mitral jet sweeps the inner ventricle surface up to the apex, thus preventing undesired flow stagnation. In contrast, for pathological ejection fractions (⩽40 %), the flow disturbances introduced by the bileaflet mechanical valve reduce the penetration capability of the mitral jet and weaken the recirculation in the ventricular apex. Although in clinical practice the fatality rates in the five-year follow-ups for mechanical and biological mitral valve replacements are essentially the same, a breakdown of the deaths shows that the causes are very different for the two classes of prostheses and the present findings are consistent with the clinical data. This might have important clinical implications for the choice of prosthetic device in patients needing mitral valve replacement.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3