APOK3, a pollen killer antidote in Arabidopsis thaliana

Author:

Simon Matthieu1,Durand Stéphanie1,Ricou Anthony1,Vrielynck Nathalie1,Mayjonade Baptiste2ORCID,Gouzy Jérôme2ORCID,Boyer Roxane3,Roux Fabrice2ORCID,Camilleri Christine1ORCID,Budar Françoise1ORCID

Affiliation:

1. Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) , 78000 Versailles, France

2. LIPME, Université de Toulouse, INRAE, CNRS , 31326 Castanet-Tolosan, France

3. INRAE, GeT-PlaGe, Genotoul , 31326 Castanet-Tolosan, France

Abstract

Abstract The principles of heredity state that the two alleles carried by a heterozygote are equally transmitted to the progeny. However, genomic regions that escape this rule have been reported in many organisms. It is notably the case of genetic loci referred to as gamete killers, where one allele enhances its transmission by causing the death of the gametes that do not carry it. Gamete killers are of great interest, particularly to understand mechanisms of evolution and speciation. Although being common in plants, only a few, all in rice, have so far been deciphered to the causal genes. Here, we studied a pollen killer found in hybrids between two accessions of Arabidopsis thaliana. Exploring natural variation, we observed this pollen killer in many crosses within the species. Genetic analyses revealed that three genetically linked elements are necessary for pollen killer activity. Using mutants, we showed that this pollen killer works according to a poison-antidote model, where the poison kills pollen grains not producing the antidote. We identified the gene encoding the antidote, a chimeric protein addressed to mitochondria. De novo genomic sequencing in 12 natural variants with different behaviors regarding the pollen killer revealed a hyper variable locus, with important structural variations particularly in killer genotypes, where the antidote gene recently underwent duplications. Our results strongly suggest that the gene has newly evolved within A. thaliana. Finally, we identified in the protein sequence polymorphisms related to its antidote activity.

Funder

INRAE Biology and Plant Breeding Department

Région Midi-Pyrénées

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3