Modeling the evolution of Schizosaccharomyces pombe populations with multiple killer meiotic drivers

Author:

López Hernández José Fabricio1,Rubinstein Boris Y1,Unckless Robert L2ORCID,Zanders Sarah E13ORCID

Affiliation:

1. Stowers Institute for Medical Research , 1000 East 50th Street, Kansas City, MO 64110 , USA

2. Department of Molecular Biosciences, University of Kansas , 1200 Sunnyside Avenue, Lawrence, KS 66045 , USA

3. Department of Cell Biology and Physiology, University of Kansas Medical Center , 3901 Rainbow Boulevard, Kansas City, KS 66160 , USA

Abstract

Abstract Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as “gene drives.” Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of 2 or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.

Funder

Stowers Institute for Medical Research

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3