Using Capture–Recapture Methodology to Enhance Precision of Representative Sampling-Based Case Count Estimates

Author:

Lyles Robert H1,Zhang Yuzi1,Ge Lin1,England Cameron2,Ward Kevin2,Lash Timothy L2,Waller Lance A3

Affiliation:

1. Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory University, 1518 Clifton Rd. N.E., Atlanta, GA 30322, USA

2. Department of Epidemiology, The Rollins School of Public Health of Emory University, Atlanta, GA, USA

3. Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory University, Atlanta, GA, USA

Abstract

Abstract The application of serial principled sampling designs for diagnostic testing is often viewed as an ideal approach to monitoring prevalence and case counts of infectious or chronic diseases. Considering logistics and the need for timeliness and conservation of resources, surveillance efforts can generally benefit from creative designs and accompanying statistical methods to improve the precision of sampling-based estimates and reduce the size of the necessary sample. One option is to augment the analysis with available data from other surveillance streams that identify cases from the population of interest over the same timeframe, but may do so in a highly nonrepresentative manner. We consider monitoring a closed population (e.g., a long-term care facility, patient registry, or community), and encourage the use of capture–recapture methodology to produce an alternative case total estimate to the one obtained by principled sampling. With care in its implementation, even a relatively small simple or stratified random sample not only provides its own valid estimate, but provides the only fully defensible means of justifying a second estimate based on classical capture–recapture methods. We initially propose weighted averaging of the two estimators to achieve greater precision than can be obtained using either alone, and then show how a novel single capture–recapture estimator provides a unified and preferable alternative. We develop a variant on a Dirichlet-multinomial-based credible interval to accompany our hybrid design-based case count estimates, with a view toward improved coverage properties. Finally, we demonstrate the benefits of the approach through simulations designed to mimic an acute infectious disease daily monitoring program or an annual surveillance program to quantify new cases within a fixed patient registry.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Social Sciences (miscellaneous),Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3