A capture-recapture modeling framework emphasizing expert opinion in disease surveillance

Author:

Zhang Yuzi1ORCID,Ge Lin23,Waller Lance A1,Shah Sarita4,Lyles Robert H1

Affiliation:

1. Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA

2. Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, MA, USA

3. Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA

4. Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA

Abstract

In disease surveillance, capture-recapture methods are commonly used to estimate the number of diseased cases in a defined target population. Since the number of cases never identified by any surveillance system cannot be observed, estimation of the case count typically requires at least one crucial assumption about the dependency between surveillance systems. However, such assumptions are generally unverifiable based on the observed data alone. In this paper, we advocate a modeling framework hinging on the choice of a key population-level parameter that reflects dependencies among surveillance streams. With the key dependency parameter as the focus, the proposed method offers the benefits of (a) incorporating expert opinion in the spirit of prior information to guide estimation; (b) providing accessible bias corrections, and (c) leveraging an adapted credible interval approach to facilitate inference. We apply the proposed framework to two real human immunodeficiency virus surveillance datasets exhibiting three-stream and four-stream capture-recapture-based case count estimation. Our approach enables estimation of the number of human immunodeficiency virus positive cases for both examples, under realistic assumptions that are under the investigator's control and can be readily interpreted. The proposed framework also permits principled uncertainty analyses through which a user can acknowledge their level of confidence in assumptions made about the key non-identifiable dependency parameter.

Funder

National Institutes of Health

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3