Sensitivity and Uncertainty Analysis for Two-stream Capture–Recapture Methods in Disease Surveillance

Author:

Zhang Yuzi1ORCID,Chen Jiandong1,Ge Lin1,Williamson John M.2,Waller Lance A.1,Lyles Robert H.1

Affiliation:

1. Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory University, Atlanta, GA

2. Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, GA.

Abstract

Capture–recapture methods are widely applied in estimating the number ( ) of prevalent or cumulatively incident cases in disease surveillance. Here, we focus the bulk of our attention on the common case in which there are 2 data streams. We propose a sensitivity and uncertainty analysis framework grounded in multinomial distribution-based maximum likelihood, hinging on a key dependence parameter that is typically nonidentifiable but is epidemiologically interpretable. Focusing on the epidemiologically meaningful parameter unlocks appealing data visualizations for sensitivity analysis and provides an intuitively accessible framework for uncertainty analysis designed to leverage the practicing epidemiologist’s understanding of the implementation of the surveillance streams as the basis for assumptions driving estimation of . By illustrating the proposed sensitivity analysis using publicly available HIV surveillance data, we emphasize both the need to admit the lack of information in the observed data and the appeal of incorporating expert opinion about the key dependence parameter. The proposed uncertainty analysis is a simulation-based approach designed to more realistically acknowledge variability in the estimated associated with uncertainty in an expert’s opinion about the nonidentifiable parameter, together with the statistical uncertainty. We demonstrate how such an approach can also facilitate an appealing general interval estimation procedure to accompany capture–recapture methods. Simulation studies illustrate the reliable performance of the proposed approach for quantifying uncertainties in estimating in various contexts. Finally, we demonstrate how the recommended paradigm has the potential to be directly extended for application to data from >2 surveillance streams.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3