Affiliation:
1. Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
Abstract
Abstract
We show in a quantitative way that any odd primitive character χ modulo q of fixed order g ≥ 2 satisfies the property that if the Pólya–Vinogradov inequality for χ can be improved to $$\begin{equation*} \max_{1 \leq t \leq q} \left|\sum_{n \leq t} \chi(n)\right| = o_{q \rightarrow \infty}(\sqrt{q}\log q) \end{equation*}$$ then for any ɛ > 0 one may exhibit cancellation in partial sums of χ on the interval [1, t] whenever $t \gt q^{\varepsilon}$, i.e., $$\begin{equation*} \sum_{n \leq t} \chi(n) = o_{q \rightarrow \infty}(t)\ \text{for all } t \gt q^{\varepsilon}. \end{equation*}$$
We also prove a converse implication, to the effect that if all odd primitive characters of fixed order dividing g exhibit cancellation in short sums then the Pólya–Vinogradov inequality can be improved for all odd primitive characters of order g. Some applications are also discussed.
Publisher
Oxford University Press (OUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献