Short Character Sums and the Pólya–Vinogradov Inequality

Author:

Mangerel Alexander P1

Affiliation:

1. Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada

Abstract

Abstract We show in a quantitative way that any odd primitive character χ modulo q of fixed order g ≥ 2 satisfies the property that if the Pólya–Vinogradov inequality for χ can be improved to $$\begin{equation*} \max_{1 \leq t \leq q} \left|\sum_{n \leq t} \chi(n)\right| = o_{q \rightarrow \infty}(\sqrt{q}\log q) \end{equation*}$$ then for any ɛ > 0 one may exhibit cancellation in partial sums of χ on the interval [1, t] whenever $t \gt q^{\varepsilon}$, i.e., $$\begin{equation*} \sum_{n \leq t} \chi(n) = o_{q \rightarrow \infty}(t)\ \text{for all } t \gt q^{\varepsilon}. \end{equation*}$$ We also prove a converse implication, to the effect that if all odd primitive characters of fixed order dividing g exhibit cancellation in short sums then the Pólya–Vinogradov inequality can be improved for all odd primitive characters of order g. Some applications are also discussed.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference18 articles.

1. Multiplicative functions in arithmetic progressions;Balog;Ann. Sci. Math. Qué.,2012

2. Pólya–Vinogradov and the least quadratic nonresidue;Bober;Math. Ann.,2016

3. Improving the Burgess bound via Pólya–Vinogradov;Fromm;Proc. Amer. Math. Soc.,2018

4. Multiplicative mimicry and improvements to the Pólya–Vinogradov inequality;Goldmakher;Algebra Number Theory,2012

5. Lower bounds on odd order character sums;Goldmakher;International Mathematics Research Notices,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large sums of high‐order characters;Journal of the London Mathematical Society;2023-12-19

2. Three conjectures about character sums;Mathematische Zeitschrift;2023-10-23

3. Large odd order character sums and improvements of the Pólya-Vinogradov inequality;Transactions of the American Mathematical Society;2022-03-04

4. Dirichlet characters of the rational polynomials;AIMS Mathematics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3