Author:
Guo Wenjia, ,Liu Xiaoge,Zhang Tianping
Abstract
<abstract><p>Denote by $ \chi $ a Dirichlet character modulo $ q\geq 3 $, and $ \overline{a} $ means $ a\cdot\overline{a} \equiv 1 \bmod q $. In this paper, we study Dirichlet characters of the rational polynomials in the form</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \sum\limits^{q}_{a = 1}'\chi(ma+\overline{a}), $\end{document} </tex-math></disp-formula></p>
<p>where $ \sum\limits_{a = 1}^{q}' $ denotes the summation over all $ 1\le a\le q $ with $ (a, q) = 1 $. Relying on the properties of character sums and Gauss sums, we obtain W. P. Zhang and T. T. Wang's identity <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> under a more relaxed situation. We also derive some new identities for the fourth power mean of it by adding some new ingredients.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference17 articles.
1. G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttingen Nachr., 167 (1918), 21–29.
2. I. M. Vinogradov, On the distribution of residues and non-residues of powers, J. Phys. Math. Soc. Perm., 1 (1918), 94–96.
3. A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. U.S.A., 34 (1948), 204–207. doi: 10.1073/pnas.34.5.204.
4. W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. Lond. Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030.
5. W. P. Zhang, W. L. Yao, A note on the Dirichlet characters of polynomials, Acta Arith., 115 (2004), 225–229. doi: 10.4064/aa115-3-3.