Author:
Granville Andrew,Mangerel Alexander P.
Abstract
AbstractWe establish that three well-known and rather different looking conjectures about Dirichlet characters and their (weighted) sums, (concerning the Pólya–Vinogradov theorem for maximal character sums, the maximal admissible range in Burgess’ estimate for short character sums, and upper bounds for $$L(1,\chi )$$
L
(
1
,
χ
)
and $$L(1+it,\chi )$$
L
(
1
+
i
t
,
χ
)
) are more-or-less “equivalent”. We also obtain a new mean value theorem for logarithmically weighted sums of 1-bounded multiplicative functions.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Balog, A., Granville, A., Soundarajan, K.: Multiplicative functions in arithmetic progressions. Ann. Math. Qué. 37, 3–30 (2013)
2. Bober, J.W., Goldmakher, L.: Pólya–Vinogradov and the least quadratic nonresidue. Math. Ann. 366, 853–863 (2016)
3. Burgess, D.A.: On character sums and primitive roots. Proc. Lond. Math. Soc. 12(3), 179–192 (1962)
4. de la Bretèche, R., Granville, A.: Exponential sums with multiplicative coefficients and applications. Trans. Am. Math. Soc. (to appear)
5. Fromm, E., Goldmakher, L.: Improving the Burgess bound via Pólya–Vinogradov. Proc. Am. Math. Soc. 147, 461–466 (2019)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The limiting distribution of Legendre paths;Journal de l’École polytechnique — Mathématiques;2024-05-22
2. Large sums of high‐order characters;Journal of the London Mathematical Society;2023-12-19