Unsupervised network traffic anomaly detection with deep autoencoders

Author:

Dutta Vibekananda1,Pawlicki Marek2,Kozik Rafał2,Choraś Michał2

Affiliation:

1. Institute of Telecommunications and Computer Science , Bydgoszcz University of Science and Technology, al. Profesora Sylwestra Kaliskiego 7, 85-976 Bydgoszcz, Poland and Institute of Micromechanics and Photonics, Warsaw University of Technology, św. Andrzeja Boboli 8/507, 02-525 Warsaw, Poland

2. Institute of Telecommunications and Computer Science , Bydgoszcz University of Science and Technology, al. Profesora Sylwestra Kaliskiego 7, 85-976 Bydgoszcz, Poland

Abstract

Abstract Contemporary Artificial Intelligence methods, especially their subset-deep learning, are finding their way to successful implementations in the detection and classification of intrusions at the network level. This paper presents an intrusion detection mechanism that leverages Deep AutoEncoder and several Deep Decoders for unsupervised classification. This work incorporates multiple network topology setups for comparative studies. The efficiency of the proposed topologies is validated on two established benchmark datasets: UNSW-NB15 and NetML-2020. The results of their analysis are discussed in terms of classification accuracy, detection rate, false-positive rate, negative predictive value, Matthews correlation coefficient and F1-score. Furthermore, comparing against the state-of-the-art methods used for network intrusion detection is also disclosed.

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference39 articles.

1. A survey of intrusion detection systems based on ensemble and hybrid classifiers;Aburomman;Computers & Security,2017

2. Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model;Aljawarneh;Journal of Computational Science,2018

3. Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class svm;Binbusayyis;Applied Intelligence,2021

4. Tight arms race: overview of current malware threats and trends in their detection;Caviglione,2021

5. Machine learning techniques applied to detect cyber attacks on web applications;Choraś;Logic Journal of the IGPL,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3