Influence of autoencoder latent space on classifying IoT CoAP attacks

Author:

García-Ordás María Teresa1,Aveleira-Mata Jose2,García-Rodrígez Isaías3,Luis Casteleiro-Roca José4,Bayón-Gutiérrez Martín5,Alaiz-Moretón Héctor6

Affiliation:

1. Department of Electrical and Systems Engineering , University of León, Escuela de Ingenierías, Campus de Vegazana, 24071 León, Spain, mgaro@unileon.es

2. Research Institute of Applied Sciences in Cybersecurity (RIASC) MIC , University of León, 24071 León, Spain, jose.aveleira@unileon.es

3. Department of Electrical and Systems Engineering , University of León, Escuela de Ingenierías, Campus de Vegazana, 24071 León, Spain, igarr@unileon.es

4. Department of Industrial Engineering , University of A Coruña, CTC, CITIC Avda. 19 de febrero s/n, 15405, Ferrol, A Coruña, Spain, jose.luis.casteleiro@udc.es

5. Department of Electrical and Systems Engineering , University of León, Escuela de Ingenierías, Campus de Vegazana, 24071 León, Spain, martin.bayon@unileon.es

6. Research Institute of Applied Sciences in Cybersecurity (RIASC) MIC , University of León, 24071 León, Spain, hector.moreton@unileon.es

Abstract

Abstract The Internet of Things (IoT) presents a unique cybersecurity challenge due to its vast network of interconnected, resource-constrained devices. These vulnerabilities not only threaten data integrity but also the overall functionality of IoT systems. This study addresses these challenges by exploring efficient data reduction techniques within a model-based intrusion detection system (IDS) for IoT environments. Specifically, the study explores the efficacy of an autoencoder’s latent space combined with three different classification techniques. Utilizing a validated IoT dataset, particularly focusing on the Constrained Application Protocol (CoAP), the study seeks to develop a robust model capable of identifying security breaches targeting this protocol. The research culminates in a comprehensive evaluation, presenting encouraging results that demonstrate the effectiveness of the proposed methodologies in strengthening IoT cybersecurity with more than a 99% of precision using only 2 learned features.

Publisher

Oxford University Press (OUP)

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3