Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems

Author:

Michelena Álvaro1,Zayas-Gato Francisco2,Jove Esteban3,Casteleiro-Roca José-Luis4,Quintián Héctor5,Fontenla-Romero Óscar6,Luis Calvo-Rolle José7

Affiliation:

1. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, Ferrol, A Coruña 15403 , Spain , alvaro.michelena@udc.es

2. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, Ferrol, A Coruña 15403 , Spain , f.zayas.gato@udc.es

3. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, Ferrol, A Coruña 15403 , Spain , esteban.jove@udc.es

4. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, Ferrol, A Coruña 15403 , Spain , jose.luis.casteleiro@udc.es

5. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, Ferrol, A Coruña 15403 , Spain , hector.quintian@udc.es

6. Faculty of Computer Science , University of A Coruña, LIDIA, A Coruña 15008 , Spain , oscar.fontenla@udc.es

7. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, Ferrol, A Coruña 15403 , Spain , jlcalvo@udc.es

Abstract

Abstract The present research describes a novel adaptive anomaly detection method to optimize the performance of nonlinear and time-varying systems. The proposal integrates a centroid-based approach with the real-time identification technique Recursive Least Squares. In order to find anomalies, the approach compares the present system dynamics with the average (centroid) of the dynamics found in earlier states for a given setpoint. The system labels the dynamics difference as an anomaly if it rises over a determinate threshold. To validate the proposal, two different datasets obtained from a level control plant operation have been used, to which anomalies have been artificially added. The results shown have determined a satisfactory performance of the method, especially in those processes with low noise.

Publisher

Oxford University Press (OUP)

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detección de anomalías en turbinas eólicas;Jornadas de Automática;2024-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3