Advanced Visualization of Intrusions in Flows by Means of Beta-Hebbian Learning

Author:

Quintián Héctor1,Jove Esteban1,Casteleiro-Roca José-Luis1,Urda Daniel2,Arroyo Ángel2,Luis Calvo-Rolle José1,Herrero Álvaro2,Corchado Emilio3

Affiliation:

1. Department of Industrial Engineering, University of A Coruña , CTC, CITIC Avda. 19 de febrero s/n, 15405, Ferrol, A Coruña, Spain

2. Grupo de Inteligencia Computacional Aplicada (GICAP) , Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad de Burgos, Av. Cantabria s/n, 09006, Burgos, Spain

3. Edificio Departamental, University of Salamanca , Campus Unamuno, 37007 Salamanca, Spain

Abstract

Abstract Detecting intrusions in large networks is a highly demanding task. In order to reduce the computation demand of analysing every single packet travelling along one of such networks, some years ago flows were proposed as a way of summarizing traffic information. Very few research works have addressed intrusion detection in flows from a visualizations perspective. In order to bridge this gap, the present paper proposes the application of a novel projection method (Beta Hebbian Learning) under this framework. With the aim to validate this method, 8 traffic segments, containing many flows, have been analysed by means of this projection method. The promising results obtained for these segments, extracted from the University of Twente dataset, validate the proposed application.

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference27 articles.

1. Fiviz: forensics investigation through visualization for malware in internet of things;Ahmad;Sustainability,2020

2. Malware visualization techniques;Ahmet;International Journal of Applied Mathematics Electronics and Computers,2020

3. Neural analysis of http traffic for web attack detection;Atienza,2015

4. Genetic algorithms and particle swarm optimization for exploratory projection pursuit;Berro;Annals of Mathematics and Artificial Intelligence,10 2010

5. Investigation of network intrusion detection using data visualization methods;Bulavas,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems;Logic Journal of the IGPL;2024-05-14

2. Beta-Hebbian Learning to enhance unsupervised exploratory visualizations of Android malware families;Logic Journal of the IGPL;2024-03-20

3. Comparative Analysis of Intelligent Techniques for Categorization of the Operational Status of LiFePo4 Batteries;Lecture Notes in Computer Science;2023

4. An Anomaly Detection Approach for Realtime Identification Systems Based on Centroids;International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022);2022-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3