Beta-Hebbian Learning to enhance unsupervised exploratory visualizations of Android malware families

Author:

Basurto Nuño1,García-Prieto Diego2,Quintián Héctor3,Urda Daniel4,Calvo-Rolle José Luis5,Corchado Emilio6

Affiliation:

1. Grupo de Inteligencia Computacional Aplicada (GICAP) , Departamento de Digitalización, Escuela Politécnica Superior, Universidad de Burgos, Av. Cantabria s/n, 09006, Burgos, Spain, nbasurto@ubu.es

2. Grupo de Inteligencia Computacional Aplicada (GICAP) , Departamento de Digitalización, Escuela Politécnica Superior, Universidad de Burgos, Av. Cantabria s/n, 09006, Burgos, Spain, dgprieto@ubu.es

3. University of A Coruña , CTC, CITIC, Department of Industrial Engineering, Ferrol, A Coruña, Spain, hector.quintian@udc.es

4. Grupo de Inteligencia Computacional Aplicada (GICAP) , Departamento de Digitalización, Escuela Politécnica Superior, Universidad de Burgos, Av. Cantabria s/n, 09006, Burgos, Spain, durda@ubu.es

5. University of A Coruña , CTC, CITIC, Department of Industrial Engineering, Ferrol, A Coruña, Spain, jlcalvo@udc.es

6. University of Salamanca , Department of Computing and Automatic, Salamanca, Spain, escorchado@usal.es

Abstract

Abstract As it is well known, mobile phones have become a basic gadget for any individual that usually stores sensitive information. This mainly motivates the increase in the number of attacks aimed at jeopardizing smartphones, being an extreme concern above all on Android OS, which is the most popular platform in the market. Consequently, a strong effort has been devoted for mitigating mentioned incidents in recent years, even though few researchers have addressed the application of visualization techniques for the analysis of malware. Within this field, the present work proposes the extension of a new technique called Hybrid Unsupervised Exploratory Plots to visualize Android malware datasets. More precisely, the novel Beta-Hebbian Learning (BHL) method is applied for the first time and validated under the frame of Hybrid Unsupervised Exploratory Plots, in conjunction with clustering methods. The informative visualization achieved provides a picture of the structure of the malware families, allowing subsequent analysis of their organization. To validate the Hybrid Unsupervised Exploratory Plot extension and its tuning, the popular Android Malware Genome dataset has been used in the experimental setting. Promising results have been obtained, suggesting that BHL applied in combination with clustering techniques in Hybrid Unsupervised Exploratory Plots are a viable resource for the visualization of malware families.

Publisher

Oxford University Press (OUP)

Reference41 articles.

1. A detailed investigation and analysis of deep learning architectures and visualization techniques for malware family identification;Akarsh,2019

2. Analyzing and comparing the effectiveness of various machine learning algorithms for android malware detection;Akhtar;Advances in Mobile Learning Educational Research,2023

3. A visual tool for monitoring and detecting anomalies in robot performance;Basurto;Pattern Analysis and Applications,2022

4. A clustering extension of hueps for the analysis of performance anomalies in robots;Basurto;Cybernetics & Systems, accepted and in press,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3