A novel method for anomaly detection using beta Hebbian learning and principal component analysis

Author:

Zayas-Gato Francisco1,Michelena Álvaro2,Quintián Héctor1,Jove Esteban3,Casteleiro-Roca José-Luis1,Leitão Paulo4,Luis Calvo-Rolle José3

Affiliation:

1. Department of Industrial Engineering , University of A Coruña, CTC, Avda. 19 de Febrero s/n, 15405, Ferrol, A Coruña, Spain

2. CITIC Research , University of A Coruña, Elviña Campus s/n, 15008, A Coruña, Spain

3. Department of Industrial Engineering , University of A Coruña, CTC, Avda. 19 de Febrero s/n, 15405, Ferrol, A Coruña, Spain. CITIC Research, University of A Coruña, Elviña Campus s/n, 15008, A Coruña, Spain

4. CeDRI - Research Centre in Digitalization and Intelligent Robotics , Polytechnic Institute of Bragança and INESC TEC, Porto, Portugal

Abstract

Abstract In this research work a novel two-step system for anomaly detection is presented and tested over several real datasets. In the first step the novel Exploratory Projection Pursuit, Beta Hebbian Learning algorithm, is applied over each dataset, either to reduce the dimensionality of the original dataset or to face nonlinear datasets by generating a new subspace of the original dataset with lower, or even higher, dimensionality selecting the right activation function. Finally, in the second step Principal Component Analysis anomaly detection is applied to the new subspace to detect the anomalies and improve its classification capabilities. This new approach has been tested over several different real datasets, in terms of number of variables, number of samples and number of anomalies. In almost all cases, the novel approach obtained better results in terms of area under the curve with similar standard deviation values. In case of computational cost, this improvement is only remarkable when complexity of the dataset in terms of number of variables is high.

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference17 articles.

1. Approximate polytope ensemble for one-class classification;Casale;Pattern Recognition,2014

2. Hybrid model for the ANI index prediction using remifentanil drug and EMG signal;Casteleiro-Roca;Neural Computing and Applications,2018

3. Anomaly detection: a survey;Chandola;ACM Computing Surveys (CSUR),2009

4. Digitalisation of the economy and its impact on labour markets;Degryse;ETUI Research Paper-Working Paper,2016

5. Recognizing faces with PCA and ICA;Draper;Computer Vision and Image Understanding,2003

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3