Integrated model simulates bigger, sweeter tomatoes under changing climate under reduced nitrogen and water input

Author:

Zhou Huiping12,Kang Shaozhong12,Génard Michel3,Vercambre Gilles3,Chen Jinliang12

Affiliation:

1. China Agricultural University Center for Agricultural Water Research in China, , Beijing 100083, China

2. National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province , Wuwei 733009, China

3. INRAE, UR 1115 Plantes et Systèmes de Culture Horticoles , Avignon Cedex 9 F-84914, France

Abstract

Abstract When simulating the response of fruit growth and quality to environmental factors and cultivation practices, the interactions between the mother plant and fruit need to be considered as a whole system. Here, we developed the integrative Tomato plant and fruit Growth and Fruit Sugar metabolism (TGFS) model by coupling equations describing the biophysical processes of leaf gas exchange, water transport, carbon allocation, organ growth and fruit sugar metabolism. The model also accounts for effects of soil nitrogen and atmospheric CO2 concentration on gaseous exchange of water and carbon by the leaf. With different nitrogen and water input values, TGFS performed well at simulating the dry mass of the tomato leaf, stem, root, and fruit, and the concentrations of soluble sugar and starch in fruit. TGFS simulations showed that increasing air temperature and CO2 concentration has positive effects on fruit growth, but not on sugar concentrations. Further model-based analyses of cultivation scenarios suggest that, in the context of climate change, decreasing N by 15%–25% and decreasing irrigation by 10%–20% relative to current levels would increase tomato fresh weight by 27.8%–36.4% while increasing soluble sugar concentration by up to 10%. TGFS provides a promising tool to optimise N and water inputs for sustainable high-quality tomatoes.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3