Abstract
Abstract
Rising atmospheric CO2 concentration ([CO2]) enhances photosynthesis and reduces transpiration at the leaf, ecosystem, and global scale via the CO2 fertilization effect. The CO2 fertilization effect is among the most important processes for predicting the terrestrial carbon budget and future climate, yet it has been elusive to quantify. For evaluating the CO2 fertilization effect on land photosynthesis and transpiration, we developed a technique that isolated this effect from other confounding effects, such as changes in climate, using a noisy time series of observed land-atmosphere CO2 and water vapor exchange. Here, we evaluate the magnitude of this effect from 2000 to 2014 globally based on constraint optimization of gross primary productivity (GPP) and evapotranspiration in a canopy photosynthesis model over 104 global eddy-covariance stations. We found a consistent increase of GPP (0.138 ± 0.007% ppm−1; percentile per rising ppm of [CO2]) and a concomitant decrease in transpiration (−0.073% ± 0.006% ppm−1) due to rising [CO2]. Enhanced GPP from CO2 fertilization after the baseline year 2000 is, on average, 1.2% of global GPP, 12.4 g C m−2 yr−1 or 1.8 Pg C yr−1 at the years from 2001 to 2014. Our result demonstrates that the current increase in [CO2] could potentially explain the recent land CO2 sink at the global scale.
Funder
Japan Society for the Promotion of Science
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Reference61 articles.
1. Natural climate solutions are not enough;Anderson;Science,2019
2. Inter-annual variability of net and gross ecosystem carbon fluxes: a review;Baldocchi;Agric. For. Meteorol.,2018
3. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions progress;Ball,1987
4. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis;Bernacchi;Plant Cell Environ.,2003
5. Improved temperature response functions for models of rubisco-limited photosynthesis;Bernacchi;Plant Cell Environ.,2001
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献