Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model

Author:

Ueyama MasahitoORCID,Ichii KazuhitoORCID,Kobayashi HidekiORCID,Kumagai Tomo’omiORCID,Beringer JasonORCID,Merbold LutzORCID,Euskirchen Eugénie SORCID,Hirano TakashiORCID,Marchesini Luca BelelliORCID,Baldocchi DennisORCID,Saitoh Taku MORCID,Mizoguchi YasukoORCID,Ono KeisukeORCID,Kim JoonORCID,Varlagin AndrejORCID,Kang Minseok,Shimizu Takanori,Kosugi YoshikoORCID,Bret-Harte M SyndoniaORCID,Machimura TakashiORCID,Matsuura Yojiro,Ohta Takeshi,Takagi KentaroORCID,Takanashi Satoru,Yasuda YukioORCID

Abstract

Abstract Rising atmospheric CO2 concentration ([CO2]) enhances photosynthesis and reduces transpiration at the leaf, ecosystem, and global scale via the CO2 fertilization effect. The CO2 fertilization effect is among the most important processes for predicting the terrestrial carbon budget and future climate, yet it has been elusive to quantify. For evaluating the CO2 fertilization effect on land photosynthesis and transpiration, we developed a technique that isolated this effect from other confounding effects, such as changes in climate, using a noisy time series of observed land-atmosphere CO2 and water vapor exchange. Here, we evaluate the magnitude of this effect from 2000 to 2014 globally based on constraint optimization of gross primary productivity (GPP) and evapotranspiration in a canopy photosynthesis model over 104 global eddy-covariance stations. We found a consistent increase of GPP (0.138 ± 0.007% ppm−1; percentile per rising ppm of [CO2]) and a concomitant decrease in transpiration (−0.073% ± 0.006% ppm−1) due to rising [CO2]. Enhanced GPP from CO2 fertilization after the baseline year 2000 is, on average, 1.2% of global GPP, 12.4 g C m−2 yr−1 or 1.8 Pg C yr−1 at the years from 2001 to 2014. Our result demonstrates that the current increase in [CO2] could potentially explain the recent land CO2 sink at the global scale.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference61 articles.

1. Natural climate solutions are not enough;Anderson;Science,2019

2. Inter-annual variability of net and gross ecosystem carbon fluxes: a review;Baldocchi;Agric. For. Meteorol.,2018

3. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions progress;Ball,1987

4. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis;Bernacchi;Plant Cell Environ.,2003

5. Improved temperature response functions for models of rubisco-limited photosynthesis;Bernacchi;Plant Cell Environ.,2001

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3