How advances in animal efficiency and management have affected beef cattle’s water intensity in the United States: 1991 compared to 2019

Author:

Klopatek Sarah C1ORCID,Oltjen James W1

Affiliation:

1. Department of Animal Science, University of California , Davis, CA 95616 , USA

Abstract

Abstract Updating the static model by Beckett and Oltjen (1993), we determined that from 1991 to 2019, U.S. beef cattle blue water consumption per kg of beef decreased by 37.6%. Total water use for the U.S. cattle herd decreased by 29%. As with the 1993 model, blue water use included direct water intake by animals, water applied for irrigation of crops that were consumed by beef cattle, water applied to irrigated pasture, and water used to process animals at marketing. Numbers of cattle, crop production, and irrigation data were used from USDA census and survey data. On 1 January 2019, a total of 31.7-million beef cows and 5.8-million replacement heifers were in U.S. breeding herds, and 26-million animals were fed annually. In total, the U.S. beef cattle herd (feedlot and cull cows) produced 7.7-billion kg of boneless beef, an increase of 10% since 1991. Beef cattle directly consumed 599-billion L of water per year. Feedlot cattle were fed various grain and roughage sources corresponding to the regions in which they were fed. Feeds produced in a state were preferentially used by cattle in that state with that state’s efficiency; any additional feedstuffs required used water at the national efficiency. Irrigation of crop feedstuffs for feedlot cattle required 5,920-billion L of water. Irrigated pasture for beef cattle production required an additional 4,121-billion L of water. Carcass processing required 91-billion L of water. The model estimated that in the U.S. 2,275 L of blue water was needed to produce 1 kg of boneless meat. As with the previous model, the current model was most sensitive to changes in the dressing percentage and the percentage of boneless yield in carcasses of feedlot cattle (62.8 and 65, respectively). In conclusion, with more beef, fewer cows, and lower rates of irrigation, beef cattle’s water intensity has decreased at an annual rate of 1.34% over a 28-yr period.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3