Predicting dry matter intake in beef cattle

Author:

Blake Nathan E123,Walker Matthew345,Plum Shane3,Hubbart Jason A34,Hatton Joseph6,Mata-Padrino Domingo123,Holásková Ida35,Wilson Matthew E123ORCID

Affiliation:

1. School , Morgantown, WV 26506 , USA

2. of Agriculture and Food, Davis College of Agriculture, Natural Resources and Design, West Virginia University , Morgantown, WV 26506 , USA

3. West Virginia Agricultural and Forestry Experiment Station , Morgantown, WV 26506 , USA

4. School of Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University , Morgantown, WV 26506 , USA

5. Office of Statistics and Data Analytics, Davis College of Agriculture, Natural Resources and Design, West Virginia University , Morgantown, WV 26506 , USA

6. West Virginia Department of Agriculture , Charleston, WV 25305 , USA

Abstract

Abstract Technology that facilitates estimations of individual animal dry matter intake (DMI) rates in group-housed settings will improve production and management efficiencies. Estimating DMI in pasture settings or facilities where feed intake cannot be monitored may benefit from predictive algorithms that use other variables as proxies. This study examined the relationships between DMI, animal performance, and environmental variables. Here we determined whether a machine learning approach can predict DMI from measured water intake variables, age, sex, full body weight, and average daily gain (ADG). Two hundred and five animals were studied in a drylot setting (152 bulls for 88 d and 53 steers for 50 d). Collected data included daily DMI, water intake, daily predicted full body weights, and ADG using In-Pen-Weighing Positions and Feed Intake Nodes. After exclusion of 26 bulls of low-frequency breeds and one severe (>3 standard deviations) outlier, the final number of animals used for modeling was 178 (125 bulls, 53 steers). Climate data were recorded at 30-min intervals throughout the study period. Random Forest Regression (RFR) and Repeated Measures Random Forest (RMRF) were used as machine learning approaches to develop a predictive algorithm. Repeated Measures ANOVA (RMANOVA) was used as the traditional approach. Using the RMRF method, an algorithm was constructed that predicts an animal’s DMI within 0.75 kg. Evaluation and refining of algorithms used to predict DMI in drylot by adding more representative data will allow for future extrapolation to controlled small plot grazing and, ultimately, more extensive group field settings.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3