Lysine biofortification of crops to promote sustained human health in the 21st century

Author:

Yang Qingqing12,Zhao Dongsheng1,Zhang Chuangquan1,Sreenivasulu Nese3,Sun Samuel Sai-Ming2,Liu Qiaoquan1

Affiliation:

1. Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China

2. State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China

3. Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding Innovation Platform, International Rice Research Institute, Los Banos, Philippines

Abstract

Abstract Crop biofortification is pivotal in preventing malnutrition, with lysine considered the main limiting essential amino acid (EAA) required to maintain human health. Lysine deficiency is predominant in developing countries where cereal crops are the staple food, highlighting the need for efforts aimed at enriching the staple diet through lysine biofortification. Successful modification of aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) feedback inhibition has been used to enrich lysine in transgenic rice plants without yield penalty, while increases in the lysine content of quality protein maize have been achieved via marker-assisted selection. Here, we reviewed the lysine metabolic pathway and proposed the use of metabolic engineering targets as the preferred option for fortification of lysine in crops. Use of gene editing technologies to translate the findings and engineer lysine catabolism is thus a pioneering step forward.

Funder

National Natural Science Foundation of China

Ministry of Agriculture of China

Government of Jiangsu Province, China

Bill and Melinda Gates Foundation

State Key Laboratory of Agrobiotechnology

Lo Kwee Seong and Lee Hysan Foundations

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3