UHPLC With On-Line Coupled Biochemical Detection for High Throughput Screening of Acetylcholinesterase Inhibitors in Coptidis Rhizoma and Cortex Phellodendri

Author:

Tan Jingling12ORCID,Zhang Xueqiong3,Fang Jiangji3,Shen Huadan1,Ding Xiaoping2,Zheng Guohua1

Affiliation:

1. College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China

2. Engineering Research Center for Drug Qualltiy Control, Hubei Institute for Drug Control, Wuhan 430075, PR China

3. Department of Pharmaceutical Engineering Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China

Abstract

Abstract We developed a new on-line method of ultra-performance liquid chromatography coupled with biochemical detection (UHPLC-BCD) to screen acetylcholinesterase (AChE) inhibitors in complex matrixes. Chromatography separation was performed using an Xtimate UHPLC C18 column (100 mm × 2.1 mm, 1.8 μm) and a gradient elution with methanol–0.1% formic acid at a flow rate of 0.08 mL/min. The BCD was based on a colorimetric method using Ellman’s reagent, and the detection wavelength was at 405 nm. Galanthamine was used as a positive reference to validate the methodology. The detection and quantitation limits of the UHPLC-BCD method were 0.018 and 0.060 μg, respectively. A functional equation was generated in terms of the negative peak area (X) and galanthamine concentration (Y, μg/mL). The regression equation was Y = 0.0028X2 + 0.4574X + 50.7776, R2 = 0.9993. UHPLC-fourier-transform mass spectrometry detection results revealed that five alkaloids showed obvious AChE inhibitory activities including coptisin, epiberberine, jatrorrhizine, berberine and palmatine. The relative AChE inhibitory activities of jatrorrhizine, berberine and palmatine in the Coptidis Rhizoma sample were equal to that of 257.0, 2355 and 283.9 μg/mL of galanthamine, respectively. This work demonstrated that the UHPLC-BCD method was convenient and feasible, and could be widely used for the screening and activity evaluation of the bioactive components in the complex extracts.

Funder

Natural Science Foundation of China

Science Foundation of Hubei Food and Drug Administration

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3