Multiresidue Analytical Method for Pesticides in Soybean Extract

Author:

Marques Isadora Dias1,Carriço Murilo Ricardo Sigal2,Gayer Mateus Cristofari2,de Jesus Soares Jefferson3,Roehrs Rafael3,Denardin Elton Luis Gasparotto3,Paim Clésio Soldateli1

Affiliation:

1. Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa (UNIPAMPA), BR 472 – Km 585, CEP 97500–970, Uruguaiana (RS), Brazil

2. Curso de Ciências da Natureza, Universidade Federal do Pampa (UNIPAMPA), BR 472 – Km 585, CEP 97500–970, Uruguaiana (RS), Brazil

3. Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472 – Km 585, CEP 97500–970, Uruguaiana (RS), Brazil

Abstract

Abstract Developed and validated a fast, simple and effective method based on the use of DLLME technique and determination by GC–MS of 26 pesticides in SE. To carry out the extraction of the pesticides of the matrix, 70 μL of mix of pesticides (1.5 μg/mL) was added to 5.0 mL of SE, containing 1.0 g of sodium chloride and 3.0 mL of acetonitrile. The results of validation were suitable. The calibration curve was linear in the range of 0.500–5.0 μg/mL. The method showed a limit of detection and quantification of 0.17 μg/mL and 0.50 μg/mL, respectively. The recovery recovering between 47% and 115%, with relative standard deviation (RSD) of <20% for fortification levels (range of 1.0–3.0 μg/mL). The method validated can be applied for routine analysis in soy-based drinks, considering it is fast, easy to perform and has satisfactory validation results.

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3