Mixed-Mode Hydrophilic Interactions/Reversed-Phase Retention Mechanism in Thin-Layer Chromatography

Author:

Obradović Darija1,Kowalska Teresa2,Agbaba Danica1

Affiliation:

1. Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia

2. Institute of Chemistry, University of Silesia, Katowice, Poland

Abstract

Abstract We investigated the dual retention mechanism in thin-layer chromatography taking place on three stationary phases of different polarity (C-18, plain silica gel and DIOL) and using binary mobile phases composed of acetonitrile as the main component and water, or methanol as a modifier. As the test analytes, we selected a set of 12 compounds of pharmaceutical importance and considerably different chemical structure, i.e. the imidazoline and serotonin receptor ligands, and their related compounds. Retention of each analyte in each investigated chromatographic system was determined in a wide enough range of the mobile phase composition, with volume fraction of the mobile phase modifier ranging from 0.10 to 0.90. Calculation of the exact turning point values as a proof of occurrence of the reversed-phase hydrophilic interaction chromatography (HILIC/RP) retention mechanism was based on the multimodal retention model. The dual retention mode was described with the use of the volume fraction of the mobile phase modifier, the total polarity and the total solubility models. For the DIOL, C-18 and silica gel stationary phase, the dual (HILIC/RP) retention mechanism was confirmed. In the case of the DIOL stationary phase and acetonitrile/methanol mobile phase, the observed retention mechanism was more complicated than the dual HILIC/RP one.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3