Exploring separation mechanisms and lipophilicity in hydrophilic interaction chromatography conditions by thin‐layer chromatography of anesthetics and adjuvant drugs as polar model compounds

Author:

Radoičić Aleksandra1ORCID,Šegan Sandra2,Milojković‐Opsenica Dušanka3

Affiliation:

1. Innovative Centre of Faculty of Chemistry Ltd. Belgrade Serbia

2. Department of Chemistry Institute of Chemistry Technology, and Metallurgy University of Belgrade Belgrade Serbia

3. Department of Analytical Chemistry University of Belgrade‐Faculty of Chemistry Belgrade Serbia

Abstract

The chromatographic behavior of the selected compounds was studied under conditions of hydrophilic interaction liquid chromatography (HILIC). The effect of mobile phase composition on the retention in different chromatographic systems was systematically examined using high‐performance thin‐layer chromatography. The sorbents of different polarity and adsorption characteristics were selected and mixtures of water and organic solvents of various compositions, from pure water to pure organic solvent were used as mobile phases. Increasing the amount of water in the mobile phase leads to a conversion of the separation mechanism, and the retention curves have a characteristic “U” shape. The conversion between the adsorption and partition mechanisms is most likely continuous and depends on the chemical nature of separated substances, the stationary phase as well as on organic component of the mobile phase. Silica gel can be considered the most suitable stationary phase for the systematic investigation of the chromatographic behavior of the test compounds, whereas acetonitrile was the most suitable solvent. The obtained results contribute to the understanding of the dominant separation mechanism, the type, and the intensity of the interactions between separated substances with both stationary and mobile phases. Besides, the lipophilicity parameters obtained under HILIC conditions were evaluated and correlated with the calculated values.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3