Affiliation:
1. Department of Geology, University of Maryland, College Park, MD 20742, USA
Abstract
SUMMARY
Receiver functions are sensitive to sharp seismic velocity variations with depth and are commonly used to constrain crustal thickness. The H–κ stacking method of Zhu & Kanamori is often used to constrain both the crustal thickness (H) and ${V_P}$/${V_S}$ ratio ($\kappa $) beneath a seismic station using P-to-s converted waves (Ps). However, traditional H–κ stacks require an assumption of average crustal velocity (usually ${V_P}$). Additionally, large amplitude reverberations from low velocity shallow layers, such as sedimentary basins, can overprint sought-after crustal signals, rendering traditional H–$\ \kappa $ stacking uninterpretable. We overcome these difficulties in two ways. When S-wave reverberations from sediment are present, they are removed by applying a resonance removal filter allowing crustal signals to be clarified and interpreted. We also combine complementary Ps receiver functions, Sp receiver functions, and the post-critical P-wave reflection from the Moho (SPmp) to remove the dependence on an assumed average crustal ${V_P}$. By correcting for sediment and combining multiple data sets, the crustal thickness, average crustal P-wave velocity and crustal ${V_P}$/${V_S}$ ratio is constrained in geological regions where traditional H–$\ \kappa $ stacking fails, without making an initial P-wave velocity assumption or suffering from contamination by sedimentary reverberations.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献