Crustal Imaging with Noisy Teleseismic Receiver Functions Using Sparse Radon Transforms

Author:

Zhang Ziqi1ORCID,Olugboji Tolulope123ORCID

Affiliation:

1. 1Department of Earth and Environmental Sciences, University of Rochester, Rochester, New York, U.S.A.

2. 2Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, U.S.A.

3. 3Georgen Institute of Data Sciences, University of Rochester, Rochester, New York, U.S.A.

Abstract

ABSTRACT The receiver function (RF) is a widely used crustal imaging technique. In principle, it assumes relatively noise-free traces that can be used to target receiver-side structures following source deconvolution. In practice, however, mode conversions and reflections may be severely degraded by noisy conditions, hampering robust estimation of crustal parameters. In this study, we use a sparsity-promoting Radon transform to decompose the observed RF traces into their wavefield contributions, that is, direct conversions, multiples, and incoherent noise. By applying a crustal mask on the Radon-transformed RF, we obtain noise-free RF traces with only Moho conversions and reflections. We demonstrate, using a synthetic experiment and a real-data example from the Sierra Nevada, that our approach can effectively denoise the RFs and extract the underlying Moho signals. This greatly improves the robustness of crustal structure recovery as exemplified by subsequent H−κ stacking. We further demonstrate, using a station sitting on loose sediments in the Upper Mississippi embayment, that a combination of our approach and frequency-domain filtering can significantly improve crustal imaging in reverberant settings. In the presence of complex crustal structures, for example, dipping Moho, intracrustal layers, and crustal anisotropy, we recommend caution when applying our proposed approach due to the difficulty of interpreting a possibly more complicated Radon image. We expect that our technique will enable high-resolution crustal imaging and inspire more applications of Radon transforms in seismic signal processing.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3