Affiliation:
1. Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine , London WC1E 7HT, UK
2. Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine , London WC1E 7HT, UK
Abstract
AbstractMotivationMachine learning (ML) has shown impressive performance in predicting antimicrobial resistance (AMR) from sequence data, including for Mycobacterium tuberculosis, the causative agent of tuberculosis. However, current ML development and publication practices make it difficult for researchers and clinicians to use, test or reproduce published models.ResultsWe packaged a number of published and unpublished ML models for predicting AMR of M.tuberculosis into Docker containers. Similarly, the pipelines required for pre-processing genomic data into the formats required by the models were also packaged into separate containers. By following a minimal container I/O standard, we ensured as much interoperability as possible. We also created a command-line application, TB-ML, which can be used to easily combine pre-processing and prediction containers into complete pipelines ready for predicting resistance from novel, raw data with a single command. As long as there is adherence to this minimal standard for the container interface, containers produced by researchers holding new models can likewise be included in these pipelines, making benchmark comparisons of different models simple and facilitating faster uptake in the clinic.Availability and implementationTB-ML contains a simple Docker API written in Python and is available at https://github.com/jodyphelan/tb-ml. Example Docker containers for resistance prediction and corresponding data pre-processing as well as a tutorial on how to create new containers for TB-ML are available at https://tb-ml.github.io/tb-ml-containers/.Contactjody.phelan@lshtm.ac.uk
Publisher
Oxford University Press (OUP)
Subject
Computer Science Applications,Genetics,Molecular Biology,Structural Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献