Machine Learning for Antimicrobial Resistance Prediction: Current Practice, Limitations, and Clinical Perspective

Author:

Kim Jee In123ORCID,Maguire Finlay12456ORCID,Tsang Kara K.7ORCID,Gouliouris Theodore8910,Peacock Sharon J.8,McAllister Tim A.3ORCID,McArthur Andrew G.111213ORCID,Beiko Robert G.12ORCID

Affiliation:

1. Faculty of Computer Science, Dalhousie University, Halifax, Canada

2. Institute for Comparative Genomics, Dalhousie University, Halifax, Canada

3. Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada

4. Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Canada

5. Shared Hospital Laboratory, Toronto, Canada

6. Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada

7. London School of Hygiene & Tropical Medicine, London, United Kingdom

8. Department of Medicine, University of Cambridge, Cambridge, United Kingdom

9. Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, United Kingdom

10. Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom

11. David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada

12. M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada

13. Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada

Abstract

Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR.

Funder

Gouvernement du Canada | Agriculture and Agri-Food Canada

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology

Reference136 articles.

1. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

2. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use

3. Federal Government of Canada. 2014. Antimicrobial resistance and use in Canada: a federal framework for action. Federal Government of Canada Ottawa Canada.

4. World Health Organization. 2015. Global action plan on antimicrobial resistance. World Health Organization Geneva Switzerland.

5. UK Review on AMR. 2016. Tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/home.html.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3