Federated horizontally partitioned principal component analysis for biomedical applications

Author:

Hartebrodt Anne1ORCID,Röttger Richard1ORCID

Affiliation:

1. Department of Mathematics and Computer Science, University of Southern Denmark , Odense 5230, Denmark

Abstract

Abstract Motivation Federated learning enables privacy-preserving machine learning in the medical domain because the sensitive patient data remain with the owner and only parameters are exchanged between the data holders. The federated scenario introduces specific challenges related to the decentralized nature of the data, such as batch effects and differences in study population between the sites. Here, we investigate the challenges of moving classical analysis methods to the federated domain, specifically principal component analysis (PCA), a versatile and widely used tool, often serving as an initial step in machine learning and visualization workflows. We provide implementations of different federated PCA algorithms and evaluate them regarding their accuracy for high-dimensional biological data using realistic sample distributions over multiple data sites, and their ability to preserve downstream analyses. Results Federated subspace iteration converges to the centralized solution even for unfavorable data distributions, while approximate methods introduce error. Larger sample sizes at the study sites lead to better accuracy of the approximate methods. Approximate methods may be sufficient for coarse data visualization, but are vulnerable to outliers and batch effects. Before the analysis, the PCA algorithm, as well as the number of eigenvectors should be considered carefully to avoid unnecessary communication overhead. Availability and implementation Simulation code and notebooks for federated PCA can be found at https://gitlab.com/roettgerlab/federatedPCA; the code for the federated app is available at https://github.com/AnneHartebrodt/fc-federated-pca Supplementary information Supplementary data are available at Bioinformatics Advances online.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference46 articles.

1. Privacy-preserving PCA on horizontally-partitioned data;Al-Rubaie;2017 IEEE Conference on Dependable and Secure Computing,2017

2. A Review of Distributed Data Models for Learning

3. Principal Component Analysis for Distributed Data Sets with Updating

4. An improved gap-dependency analysis of the noisy power method;Balcan;29th Annual Conference on Learning Theory,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3