Federated singular value decomposition for high-dimensional data

Author:

Hartebrodt AnneORCID,Röttger RichardORCID,Blumenthal David B.ORCID

Abstract

AbstractFederated learning (FL) is emerging as a privacy-aware alternative to classical cloud-based machine learning. In FL, the sensitive data remains in data silos and only aggregated parameters are exchanged. Hospitals and research institutions which are not willing to share their data can join a federated study without breaching confidentiality. In addition to the extreme sensitivity of biomedical data, the high dimensionality poses a challenge in the context of federated genome-wide association studies (GWAS). In this article, we present a federated singular value decomposition algorithm, suitable for the privacy-related and computational requirements of GWAS. Notably, the algorithm has a transmission cost independent of the number of samples and is only weakly dependent on the number of features, because the singular vectors corresponding to the samples are never exchanged and the vectors associated with the features are only transmitted to an aggregator for a fixed number of iterations. Although motivated by GWAS, the algorithm is generically applicable for both horizontally and vertically partitioned data.

Funder

Horizon 2020

Bundesministerium für Bildung und Forschung

University Library of Southern Denmark

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference61 articles.

1. Al-Rubaie M, Wu PY, Chang JM, et al (2017) Privacy-preserving PCA on horizontally-partitioned data. In: 2017 IEEE conference on dependable and secure computing, pp 280–287. https://doi.org/10.1109/DESEC.2017.8073817

2. Asi H, Duchi JC (2020) Instance-optimality in differential privacy via approximate inverse sensitivity mechanisms. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in neural information processing systems, vol 33. Curran Associates, Inc., pp 14106–14117. https://proceedings.neurips.cc/paper/2020/file/a267f936e54d7c10a2bb70dbe6ad7a89-Paper.pdf

3. Balcan MF, Kanchanapally V, Liang Y et al (2014) Improved distributed principal component analysis. In: Advances in neural information processing systems 4(January), pp 3113–3121. arXiv: org/abs/1408.5823

4. Balcan MF, Du SS, Wang Y et al (2016) An improved gap-dependency analysis of the noisy power method. J Mach Learn Res 49(June):284–309 (http://arxiv.org/1602.07046)

5. Benz A, Chow A, Burkhardt D et al (2022) Open problems: multimodal single-cell integration. https://kaggle.com/competitions/open-problems-multimodal

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3