Efficacy of federated learning on genomic data: a study on the UK Biobank and the 1000 Genomes Project

Author:

Kolobkov DmitryORCID,Sharma Satyarth MishraORCID,Medvedev AleksandrORCID,Lebedev MikhailORCID,Kosaretskiy EgorORCID,Vakhitov RuslanORCID

Abstract

AbstractCombining training data from multiple sources increases sample size and reduces confounding, leading to more accurate and less biased machine learning models. In healthcare, however, direct pooling of data is often not allowed by data custodians who are accountable for minimizing the exposure of sensitive information. Federated learning offers a promising solution to this problem by training a model in a decentralized manner thus reducing the risks of data leak-age. Although there is increasing utilization of federated learning on clinical data, its efficacy on individual-level genomic data has not been studied. This study lays the groundwork for the adoption of federated learning for genomic data by investigating its applicability in two scenarios: phenotype prediction on the UK Biobank data and ancestry prediction on the 1000 Genomes Project data. We show that federated models trained on data split into independent nodes achieve performance close to centralized models, even in the presence of significant inter-node heterogeneity. Additionally, we investigate how federated model accuracy is affected by communication frequency and suggest approaches to reduce computational complexity or communication costs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3